Merge both train and test datasets so that preprocessing applies to both. Use dataframe_train.append(dataframe_test)
dataframe.drop(col_name, axis value 1 for column, inplace True for changing original vs returning copy)
For nominal and ordinal: dataframe[’column name’].map({’F’:1, ‘M’:2})
For interval: convert to groups of intervals i.e. age(0-18, 19- 25, …) and assign values like 1,2, 3…
dataframe[’column name'].fillna(dataframe[’column name'].mode()[0])
Use fillna function of dataframe column
Use mode function of dataframe column
i.e. 55+
Use dataframe[’column'= dataframe[’column'].str.replace(’+’, ‘’)
If datatype is object, change to number
To check, dataframe.info()